Best Polynomial Approximation to Certain Entire Functions

A. R. ReDDY
Department of Mathematics, The University of Toledo, Toledo, Ohio 43606
Communicated by Joseph L. Walsh
Received July 24, 1970

dedicated to professor J. l. Walsh on the occasion of his 75 TH brethbay

Let $f(x)$ be a real-valued continuous function on $[-1,1]$, and let

$$
E_{n}(f) \equiv \inf _{p \in \pi_{n}}\|f-p\|, \quad n=0,1,2, \ldots ;
$$

where the norm is the uniform norm on $[-1,1]$ and π_{n} denotes the set of all polynomials with real coefficients of degree at most n. Bernstein [1, p.118] has shown that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{n}^{1 / n}(f)=0 \tag{1}
\end{equation*}
$$

if and only if $f(x)$ is the restriction to $[-1,1]$ of an entire function.
Let $f(z)$ be an entire function, and let

$$
M(r)=\max _{|z|=r}|f(z)| ;
$$

then the order ρ, lower order λ, type τ and lower type ω of $f(z)$ are defined by

$$
\begin{align*}
& \lim _{r \rightarrow \infty} \sup \log \frac{\log M(r)}{\log r}=\begin{array}{l}
\rho \\
\lambda
\end{array} \tag{2}\\
&(0 \leqslant \lambda \leqslant \rho \leqslant \infty), \\
& \lim _{r \rightarrow \infty} \sup \frac{\log M(r)}{r^{\rho}}=\tau \\
& \omega\binom{0<\rho<\infty}{0 \leqslant \omega \leqslant \tau \leqslant \infty} .
\end{align*}
$$

S. N. Bernstein [1, p. 114] proved that there exist (finite) constants $\rho>0$, $0 \leqslant \tau<\infty$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup n^{1 / p} E_{n}^{1 / n}(f) \tag{3}
\end{equation*}
$$

is finite if and only if $f(x)$ is the restriction to $[-1,1]$ of an entire function of order ρ and type τ.
(C) 1972 by Academic Press, Inc.

Recently, Varga [7, Th. 1] has proved that

$$
\begin{equation*}
\rho=\lim _{n \rightarrow \infty} \sup \frac{n \log n}{\log \left[E_{n}(f)\right]^{-1}} \tag{4}
\end{equation*}
$$

satisfies $0 \leqslant \rho<\infty$ if and only if $f(x)$ is the restriction to $[-1,1]$ of an entire function of order ρ.

The results of Bernstein and Varga give us the clue that the rate at which $E_{n}^{1 / n}(f)$ tends to zero depends on the order and type of an entire function.

To deal with functions of infinite order, we introduce the following classification ${ }^{1}$. We shall assume for such a function, that there exists a positive integer $k \geqslant 2$, for which

$$
\lim _{r \rightarrow \infty} \sup \inf \frac{l_{k+1} M(r)}{\log r}=\begin{align*}
& \rho(k) \tag{5}\\
& \lambda(k)
\end{align*}
$$

are finite and positive. Here we have used the familiar notation

$$
l_{k} x=\log \underset{k \text { times }}{\log \cdots \log x \quad(k=1,2,3, \ldots) .}
$$

Note that $l_{k} x>0$ for all sufficiently large x. An entire function $f(z)$ with $\rho(k-1)=\infty$ and $\rho(k)<\infty$ is called an entire function of index k. Note that $\rho(k)$ and $\lambda(k)$ generalize ρ and λ of (2), which correspond to $k=1$. If $\rho(k)$ is positive and finite, we can associate with it the functionals $\tau(k, f)=\tau(k)$ and $\omega(k, f)=\omega(k)$, defined by

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{l_{k} M(r)}{r^{\rho(k)}}=\frac{\tau(k)}{\omega(k)} . \tag{6}
\end{equation*}
$$

Another classification has been introduced for the class of (transcendental) entire functions of order 0 , by means of the logarithmic order ρ_{l} and the corresponding lower order λ_{l}. They are defined thus:

$$
\begin{gather*}
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log \log M(r)}{\log \log r}=\frac{\rho_{l}}{\lambda_{l}} \tag{7}\\
\left(1 \leqslant \lambda_{l} \leqslant \rho_{l} \leqslant \infty\right) .
\end{gather*}
$$

If ρ_{l} is greater than one and finite, we can define the logarithmic type τ_{l} of f and the corresponding lower type ω_{l}, by

$$
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log M(r)}{(\log r)^{a_{l}}}=\begin{gather*}
\tau_{l} \tag{8}\\
\omega_{l}
\end{gather*}
$$

[^0]The following result is also due to S . N. Bernstein $[2, \mathrm{p} .77$, Theorem 59]:
Let $f(x)$ and $g(x)$ be real-valued functions with continuous $(n+1)$-th derivative on the interval $[-1,1]$ and let

$$
\left|f^{n+1}(x)\right| \leqslant g^{n+1}(x) \text { throughout }[-1,1]
$$

Then

$$
\begin{equation*}
E_{n}(f) \leqslant E_{n}(g) \tag{9}
\end{equation*}
$$

Bernstein [1, p. 116] also proved that, if $f(\mathscr{Z})=\sum_{i=9}^{\infty} a_{k} \mathscr{Z}^{2}$ is an entire function satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{1 / 2}\left|a_{n}\right|^{1 / n}=0, \tag{10}
\end{equation*}
$$

then there exists a subsequence $\left(n_{1}, n_{2}, \ldots\right)$ of $(0,1,2, \ldots)$ such that $\left|a_{n_{\mu}^{1}}\right| \neq 0$ and

$$
\begin{equation*}
\lim _{\mu \rightarrow \infty} \frac{2^{n} \mu E_{n_{\mu}}(f)}{\left|a_{n_{j}^{+1}}\right|}=1 \tag{I}
\end{equation*}
$$

One of the purposes of this paper is to investigate under what conditions on $E_{n}(f), f$ is the restriction to $[-1,1]$ of an entire function of order <1 on order 1 and type 0 . We study also how $E_{n}(f) / E_{n+1}(f)$ is related to $\rho, \rho_{l}, \rho(k)$, τ, τ_{t}, and $\tau(k)$. Further, we prove the last result of Bernstein for a wider class of functions, namely, for entire functions of perfectly regular growth $[6, p, 44]$. For entire functions of order 0 or ∞, we study the growth of $E_{n}(f)$ and $\left|a_{n}\right|$. Furthermore, we study the following problem, related to the well-known results of Bernstein and Shohat [5, p. 379]. Given two entire functions $f(z)=\sum_{K=0}^{\infty} a_{k} z^{K}, g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$, with respective orders and types ρ_{f}, λ_{f}, τ_{f}, ω_{f}, and $\rho_{g}, \lambda_{g}, \tau_{g}, \omega_{g}$, what is the relation between $E_{n}(f) / E_{n}(g)$ and these orders and types? The bounds we obtain here are much sharper than those of Bernstein and Shohat.

Entire functions of regular growth

DEFINITION. An entire function f is of regular growth [6, p. 41$]$ if

$$
\lim _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}=\rho
$$

exists. A necessary and sufficient condition that an entire function f be of regular growth is that the coefficients a_{n} satisfy, for every $\epsilon>0$, the inequality

$$
\left|a_{n}\right|^{1 / n}<n^{-1 /(\rho+e)}, \text { for all large } n,
$$

and that there exist a strictly increasing sequence $\left\{n_{p}\right\}_{1}^{\infty}$ of positive integers such that

$$
\begin{align*}
\lim _{p \rightarrow \infty} \frac{\log n_{p+1}}{\log n_{p}} & =1 \quad \text { and } \\
\lim _{p \rightarrow \infty} & \frac{n_{p} \log n_{p}}{\log \left|1 / a_{n_{p}}\right|} \tag{12}
\end{align*}=\rho .
$$

Entire functions of perfectly regular growth
It is known that an entire function is of perfectly regular growth (ρ, τ), $0<\rho<\infty, 0<\tau<\infty$, if and only if, given $\epsilon>0$, there exists an $n_{0}(\epsilon)$ such that

$$
\frac{n}{\rho e}\left|a_{n}\right|^{\rho / n}<\tau+\epsilon, \quad \text { for } \quad n \geqslant n_{0}(\epsilon)
$$

and there exists a strictly increasing sequence $\left\{n_{w}\right\}_{1}^{\infty}$ of positive integers such that

$$
\begin{align*}
\lim _{p \rightarrow \infty} \frac{n_{p+1}}{n_{p}} & =1 \quad \text { and } \\
\lim _{p \rightarrow \infty} \frac{n_{p}}{\rho e}\left|a_{n_{p}}\right|^{p / n_{p}} & =\tau \tag{13}
\end{align*}
$$

We shall need several lemmas.
Lemma 1. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be an entire function of index k, order $\rho(k)$ and lower order $\lambda(k)(0 \leqslant \lambda(k) \leqslant \rho(k)<\infty)$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \inf \frac{1_{k} n}{\log \left|a_{n}\right| a_{n+1} \mid} & \leqslant \lim _{n \rightarrow \infty} \inf \frac{n \cdot 1_{k} n}{\log \left|1 / a_{n}\right|} \leqslant \lambda(k) \\
& \leqslant \rho(k)=\lim _{n \rightarrow \infty} \sup \frac{n \cdot 1_{k} n}{\log \left|1 / a_{n}\right|} \leqslant \lim _{n \rightarrow \infty} \frac{1_{k} n}{\log \left|a_{n}\right| a_{n+1} \mid}
\end{aligned}
$$

Proof. The result is known for the case $k=1$ [4, p. 1046]. The middle inequality is known for $k \geqslant 1$ [3, Lemmas 1 and 2A]. The extreme inequalities, when $k \geqslant 2$, follow as for the case $k=1$, and hence we omit the proof.

Lemma 2. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{z z}$ be an entire function of index k, with lower order $\lambda(k)$, such that $\left|a_{n}\right| /\left|a_{n+1}\right|$ is nondecreasing for $n \geqslant n_{0}$. Then

$$
\begin{aligned}
& \lambda(k)=\lim _{n \rightarrow \infty} \inf \frac{n \cdot 1_{k} n}{\log \left|1 / a_{n}\right|}=\lim _{n \rightarrow \infty} \inf \frac{1_{k} n}{\log \left|a_{n} / a_{n+1}\right|}, \\
& \rho(k)=\lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \left|a_{n}\right| a_{n+1} \mid} .
\end{aligned}
$$

Proof. This lemma is known for when $k=1$ [4, p. 1047]. The proof, when $k \geqslant 2$, proceeds as in the case $k=1$, using [3, Lemmas $1,2 \mathrm{~B}]$.

Lemma 3. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be an entire function of logavithmic ordes ρ_{i} and logarithmic lower order λ_{l}. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \inf \frac{\log n}{\log \log \left|a_{n}\right| a_{n+1} \mid} & \leqslant \lim _{n \rightarrow \infty} \inf \frac{\log n}{\log \left\{1 / n \log \left|1 / a_{n}\right|\right\}} \\
& \leqslant \lambda_{l}-1 \leqslant \rho_{l}-1=\lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \left\{1 / n \log \mid 1 / a_{n}\right\}} \\
& \leqslant \lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \log \left|a_{n}\right| a_{n+1} \mid}
\end{aligned}
$$

Proof. See [3, Lemmas 5, 6A].
Lemma 4. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be entire function of order ρ_{t} and lower order $\lambda_{l}\left(1 \leqslant \lambda_{l} \leqslant \rho_{l}<\infty\right)$ such that $\left|a_{n} / a_{n+1}\right|$ is nondecreasing for $n \geqslant n_{0}$. Then

$$
\begin{aligned}
& \lambda_{l}-1 \geqslant \lim _{n \rightarrow \infty} \inf \frac{\log n}{\left.\log \left\{1 / n \log \mid 1 / a_{n}\right\}\right\}}=\lim _{n \rightarrow \infty} \inf \frac{\log n}{\log \log \left|a_{n} / a_{n+1}\right|} \\
& \rho_{l}-1=\lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \log \left|a_{n}\right| a_{n+1} \mid} .
\end{aligned}
$$

Proof. See [3, Lemmas 5, 6B].

Theorems

Theorem 1. Let $f(x)$ be a real-valued continuous function defined on $[-1,1]$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n E_{n}^{1 / n}(f)=0 \tag{14}
\end{equation*}
$$

if and only if $f(x)$ is the restriction to $[-1,1]$ of an entire function of either order <1, or of order 1 and type 0 .

Proof. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of order ρ and type τ, then it is known [3, Theorems 1,3;7, Theorem] that

$$
\lim _{n \rightarrow \infty} \sup \frac{n \log n}{\log \left[1 / E_{n}(f)\right]}=\rho, \quad \lim _{n \rightarrow \infty} \sup \frac{n}{\rho e} E_{n}^{\nu / n}(f)=\frac{\tau}{2^{\circ}}
$$

and hence

$$
E_{n}^{1 / n}(f) \leqslant n^{-1 /(o+e)}, \quad \text { for } n \geqslant n(\epsilon) .
$$

Therefore,

$$
n E_{n}^{1 / n}(f) \leqslant n^{1-\frac{1}{\rho+\epsilon}}, \quad \text { for } \quad n \geqslant n(\epsilon)
$$

Hence, if $\rho<1$

$$
\lim _{n \rightarrow \infty} n E_{n}^{1 / n}(f)=0
$$

If $\rho=1$ and $\tau=0$, we have $\lim _{n \rightarrow \infty} n E_{n}^{1 / n}=0$, by the second equality of this proof. On the other hand, if $\lim _{n \rightarrow \infty} n E_{n}^{1 / n}(f)=0$, then $\lim _{n \rightarrow \infty} E_{n}^{1 / n}=0$, which indicates, because of Bernstein's theorem, that $f(x)$ is the restriction to [$-1,1]$ of an entire function. We have to show that the order of this entire function is either less than one or one, with type 0 . One can verify that

$$
\lim _{n \rightarrow \infty} \sup \frac{n \log n}{\log \left\{1 / E_{n}(f)\right\}} \leqslant 1
$$

Hence, either $\rho<1$, or $\rho=1$ and the type is zero.

Theorem 2. Let $f(x)$ be a real-valued continuous function defined on $[-1,1]$. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of index k, order $\rho(k)$ and lower order $\lambda(k)$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \inf \frac{l_{k} n}{\log \left[E_{n}(f) / E_{n+1}(f)\right]} & \leqslant \lim _{n \rightarrow \infty} \inf \frac{n \cdot l_{k} n}{\log \left[1 / E_{n}(f)\right]} \leqslant \lambda(k) \\
& \leqslant \rho(k) \leqslant \lim _{n \rightarrow \infty} \sup \frac{l_{k} n}{\log \left[E_{n}(f) / E_{n+1}(f)\right]} .
\end{aligned}
$$

Proof. Assume that $f(x)$ has an extension $f(z)$ which is an entire function of index k with lower order $\lambda(k)$. Then it is known [3, (11), (17)] that

$$
\begin{gather*}
M\left(\frac{\sigma^{2}-1}{2 \sigma}\right) \leqslant B(\sigma) \leqslant M\left(\frac{\sigma^{2}+1}{2 \sigma}\right), \tag{15}\\
B(\sigma) \leqslant C^{\prime} \sigma H(\sigma) \leqslant C^{n} \sigma(\sigma+\eta) B(\sigma+\eta) \tag{16}
\end{gather*}
$$

where $C^{\prime}, C^{\prime \prime}, \eta$ are constants and $B(\sigma)$ is the maximum of $|f(z)|$ on E_{σ} ($\sigma>1$), the closed interior of the ellipse with foci ± 1, major semiaxis ($\sigma^{2}+1 / 2 \sigma$) and minor semiaxis ($\sigma^{2}-1 / 2 \sigma$). It is also known [3, (18)] that

$$
\begin{align*}
\begin{aligned}
& \rho(k, i) \\
& \lambda(k, j) \equiv \lim _{\sigma \rightarrow \infty} \sup \\
& \inf \frac{l_{k+j} M(\sigma)}{l_{j+1} \sigma}=\lim _{\sigma \rightarrow \infty} \sup \frac{l_{k+j} B(\sigma)}{l_{j+1} \sigma} \\
&=\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{l_{k+j} H(\sigma)}{l_{j+1} \sigma} \quad\left(H(\sigma) \equiv \sum_{n=0}^{\infty} E_{n} \sigma^{n}\right)
\end{aligned}, \quad(H)
\end{align*}
$$

for any $k \geqslant 1, j \geqslant 1$. Now, applying Lemma 1 to $H(\sigma)$ of [3, (16)], we have the required result.

Theorem 3. Let $f(x)$ be a real-valued continuous function on $[-1,1]$, Then if $f(x)$ is the restriction to $[-1,1]$ of an entire function of index k, order $\rho(k)$ and lower order $\lambda(k)$ such that $E_{n}(f) / E_{n+1}(f)$ is nondecreasing for $n \geqslant n_{0},{ }^{2}$ then

$$
\begin{align*}
& \lambda(k)=\lim _{n \rightarrow \infty} \inf \frac{n \cdot l_{h} n}{\log \left[1 / E_{n}(f)\right]}=\lim _{n \rightarrow \infty} \inf \frac{l_{n} n}{\log \left[E_{n}(f) / E_{n+1}(f)\right]}, \\
& \rho(k)=\lim _{n \rightarrow \infty} \sup \frac{l_{n} n}{\log \left[E_{n}(f) / E_{n+1}(f)\right]} . \tag{18}
\end{align*}
$$

Proof. We apply Lemma 2 to $H(\sigma)$.
Theorem 4. Let $f(x)$ be a real-valued continuous function defined on $[-1,1]$ which is the restriction to $[-1,1]$ of an entire function $f(z)$ of logarithmic order ρ_{l} and logarithmic lower order λ_{l}. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \inf \frac{\log n}{\log \log \left[E_{n}(f) / E_{n+1}(f)\right]} & \leqslant \lim _{n \rightarrow \infty} \inf \frac{\log n}{\log \left\{1 / n \log \left[1 / E_{n}(f)\right]\right\}} \\
& \leqslant \lambda_{l}-1 \leqslant \rho_{l}-1 \\
& \leqslant \lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \log \left[E_{n}(f) / E_{n+1}(f)\right]}
\end{aligned}
$$

Proof. We have from (17)

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{l_{2} H(\sigma)}{l_{2} \sigma}=\frac{\rho_{l}}{\lambda_{l}} \tag{19}
\end{equation*}
$$

One deduces the required result from (19) by applying Lemma 3 to $H(\sigma)$.
Theorem 5. Let $f(x)$ be real-valued contintous function on $[-1,1]$ which is the restriction to $[-1,1]$ of an entire function $f(z)$ of \log arithmic order ρ_{1} and logarithmic lower order λ_{l}, such that $E_{n}(f) / E_{n+1}(f)$ is nondecreasing for $n \geqslant n_{0}$. Then

$$
\begin{aligned}
\lambda_{l}-1 & =\lim _{n \rightarrow \infty} \inf \frac{\log n}{\log \left\{1 / n \log \left[1 / E_{n}(f)\right]\right\}} \\
& =\lim _{n \rightarrow \infty} \inf \frac{\log n}{\log \log \left[E_{n}(f) / E_{n+1}(f)\right]}, \\
\rho_{l}-1 & =\lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \log \left[E_{n}(f) / E_{n+1}(f)\right]} .
\end{aligned}
$$

[^1]Proof. It is known from (17) that

$$
\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{l_{2} H(\sigma)}{l_{2} \sigma}=\frac{\rho_{l}}{\lambda_{l}}
$$

Applying Lemma 4 to $H(\sigma)$, we have the result.
THEOREM 6. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be an entire function of positive order and regular growth with real a_{k} 's. Then there are integers $1 \leqslant n_{1}<n_{2}<\cdots$ such that

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{\log E_{n_{p}}}{\log \left|a_{n_{p}}\right|}=1 \tag{20}
\end{equation*}
$$

Proof. Since $f(z)$ is of regular growth, we have from [3], Theorem 1, and the existence of integers $1 \leqslant n_{1}<n_{2}<\cdots$ satisfying

$$
\left.\lim _{p \rightarrow \infty} \frac{\log n_{p+1}}{\log n_{p}}\right)=1
$$

the equalities

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{n_{p} \log n_{p}}{\log \left|1 / a_{n_{p}}\right|}=\rho=\lim _{p \rightarrow \infty} \frac{n_{p} \log n_{p}}{\log \left(1 / E_{n_{p}}\right)} \tag{21}
\end{equation*}
$$

By (21),

$$
\begin{array}{ll}
\frac{n_{p} \log n_{p}}{\rho+\epsilon} \leqslant \log \frac{1}{E_{n_{p}}} \leqslant \frac{n_{p} \log n_{p}}{\rho-\epsilon} & \text { for } p \geqslant p_{0}(\epsilon) \tag{22}\\
\frac{n_{p} \log n_{p}}{\rho+\epsilon} \leqslant \log \frac{1}{\left|a_{n_{p}}\right|} \leqslant \frac{n_{p} \log n_{p}}{\rho-\epsilon} & \text { for } p \geqslant p_{1}(\epsilon)
\end{array}
$$

From (22), for a suitable ϵ^{\prime},

$$
1-\epsilon^{\prime} \leqslant \frac{\log E_{n_{p}}}{\log \left|a_{n_{p}}\right|} \leqslant 1+\epsilon^{\prime}, \quad \text { for } \quad p \geqslant \max \left(p_{0}, p_{1}\right)
$$

Hence,

$$
\lim _{p \rightarrow \infty} \frac{\log E_{n_{p}}}{\log \left|a_{n_{p}}\right|}=1
$$

Theorem 7. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{i}$ be an entire function of perfectly regular growth with real a_{k} 's. Then, for some sequence of integers $\left\{n_{i}\right\}_{j=1}^{x, 1}$, $1 \leqslant n_{1}<n_{2} \cdots$, we have

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left(\frac{E_{n_{p}}}{\mid a_{n_{p}}}\right)^{1 / n_{p}}=\frac{1}{2} . \tag{23}
\end{equation*}
$$

Proof. It is known [3, Theorem 3] that if $f(z)$ is of perfectly regular growth, then

$$
\lim _{n \rightarrow \infty} \frac{n}{\rho e}\left|a_{n}\right|^{\rho^{\rho / n}}=\lim _{w \rightarrow \infty} 2^{\rho} \frac{n}{\rho e} E_{n}^{\sigma / n}=\tau .
$$

It is also known [6, p. 44] that there exists a sequence $\left\{n_{p}\right\}_{1}^{\text {bo }}$ of positive integers, $n_{y} \rightarrow \infty$, such that

$$
\lim _{p \rightarrow \infty} \frac{n_{p+1}}{n_{p}}=1
$$

and

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{n_{p}}{\rho e}\left|a_{n_{p}}\right|^{\rho / n_{p}}=\tau=\lim _{p \rightarrow \infty} 2^{o} \frac{n_{p}}{\rho e}\left\{E_{n_{p}}(f)\right\}^{\rho / n_{p}} . \tag{24}
\end{equation*}
$$

From (24) one has

$$
\rho e(\tau-\epsilon) 2^{-\rho} \leqslant n_{y} E_{n_{p}}^{\rho ; n_{p}} \leqslant(\tau+\epsilon) \rho e 2^{-p} \quad \text { for } p \geqslant p_{0}(\epsilon)
$$

and

$$
\rho e\left(\tau-\epsilon_{1}\right) \leqslant n_{p}\left|a_{n_{p}}\right|^{\rho / n_{p}} \leqslant\left(\tau+\epsilon_{1}\right) \rho e \quad \text { for } p \geqslant p_{1}\left(\epsilon_{1}\right) \text {, }
$$

and hence

$$
\lim _{p \rightarrow \infty}\left(E_{x_{p}} \| a_{n_{p}} \mid\right)^{1 / n_{p}}=\frac{1}{2} .
$$

Theorem 8. If $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}\left(a_{k}\right.$ reai) $)$ is an entire function of index k, order $\rho(k)$ and corresponding lower order $\lambda(k)$ such that $\left|a_{n}\right| a_{n+1} \mid$ and $E_{n}(f) / E_{n+1}(f)$ are nondecreasing for $n \geqslant n_{0}$ and $n \geqslant n_{1}$, respectively, then

$$
\frac{\lambda(k)}{\rho(k)} \leqslant \lim _{n \rightarrow \infty} \inf \frac{\log E_{n}(f)}{\log \left|a_{n}\right|} \leqslant 1 \leqslant \lim _{n \rightarrow \infty} \sup \frac{\log E_{n}(f)}{\log \left|a_{n}\right|} \leqslant \frac{\rho(k)}{\lambda(k)} .
$$

Remark. There exists an entire function $f(z)=\sum_{k=0} a_{z} z^{k}$ for which $\left|a_{n} / a_{n+1}\right|$ is nondecreasing and $\rho>\lambda([4]$, p. 1047).

Proof of Theorem 8. It is known from [3, Lemmas 1,2, Theorems 1, 2] and the fact that $E_{n}(f) / E_{n+1}(f)$ and $\left|a_{n} / a_{n+1}\right|$ are nondecreasing for $n \geqslant n_{0}^{\prime}$ that

$$
\begin{align*}
\lim _{n \rightarrow \infty} \sup _{\inf } \frac{n l_{k} n}{\log \left|1 / a_{n}\right|} & =\frac{\rho(k)}{\lambda(k)}, \\
\lim _{n \rightarrow \infty} \sup \frac{n l_{k} h}{\inf } \frac{\rho(k)}{\log \left[1 / E_{n}(f)\right]} & =\begin{array}{l}
\lambda(k)^{\circ}
\end{array} \tag{25}
\end{align*}
$$

By using (25) and

$$
\begin{equation*}
\frac{\log E_{n}(f)}{\log a_{n}}=\frac{\log \left(1 / E_{n}(f)\right]}{\log \left(1 / a_{n}\right)} \cdot \frac{n l_{k} n}{n l_{k} n}, \tag{26}
\end{equation*}
$$

we have

$$
\begin{aligned}
& \varliminf_{n \rightarrow \infty} \frac{n l_{k} n}{\log \left|1 / a_{n}\right|} \varliminf_{n \rightarrow \infty} \frac{\log \left[1 / E_{n}(f)\right]}{n l_{k} n} \\
& \quad \leqslant \varliminf_{n \rightarrow \infty} \frac{\log E_{n}(f)}{\log \left|a_{n}\right|} \leqslant \varlimsup_{n \rightarrow \infty} \frac{\log \left[1 / E_{n}(f)\right]}{n l_{k} n} \varliminf_{n \rightarrow \infty} \frac{n l_{k} n}{\log 1 / a_{n}} \\
& \quad \leqslant \varlimsup_{n \rightarrow \infty} \frac{\log E_{n}(f)}{\log \left|a_{n}\right|} \leqslant \varlimsup_{n \rightarrow \infty} \frac{\log \left[1 / E_{n}(f)\right]}{n l_{k} n} \varlimsup_{n \rightarrow \infty} \frac{n l_{k} n}{\log \left|1 / a_{n}\right|},
\end{aligned}
$$

and the result follows.
Theorem 9. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}\left(a_{k}\right.$ real) be an entire function of index k, order $\rho(k)$ and types $\tau(k), \omega(k)(0 \leqslant \omega(k)<\infty)$. Assume that $E_{n}(f) / E_{n+1}(f)$ and $\left|a_{n}\right| /\left|a_{n+1}\right|$ are non-decreasing, for $n \geqslant n_{1}$. Then for $k \geqslant 1$,

$$
\begin{equation*}
\left(\frac{\omega(k)}{\tau(k)}\right)^{1 / o(k)} \leqslant \lim _{n \rightarrow \infty} \frac{2 E_{n}^{1 / n}(f)}{\left|a_{n}\right|^{1 / n}} \leqslant 1 \leqslant \lim _{n \rightarrow \infty} \frac{2 E_{n}^{1 / n}(f)}{\left|a_{n}\right|^{1 / n}} \leqslant\left(\frac{\tau(k)}{\omega(k)}\right)^{1 / \rho(k)} \tag{27}
\end{equation*}
$$

Remark. The entire function $f(z)=\sum_{n=1}^{\infty}(\log n / n)^{\rho / n} z^{n} \quad(\rho>0)$ has order ρ and type ∞. For this function f we can use Theorem 8 to relate $E_{n}(f)$ and $\left|a_{n}\right|$.

Proof of Theorem 9. From [3, Lemma 3 and Theorem 3] and the monotonicity of $E_{n}(f) / E_{n+1}(f)$ and $\left|a_{n}\right| /\left|a_{n+1}\right|$ we have, if $k=1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{n}{\rho e}\left|a_{n}\right|^{\rho / n}=\lim _{n \rightarrow \infty} \sup \frac{n}{\rho e} E_{n}^{\rho / n} 2^{\rho}=\tau \tag{28}
\end{equation*}
$$

For any $k \geqslant 2$ (cf. [3]),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup l_{k-1} n \cdot\left|a_{n}\right|^{\rho(k) / n}=\lim _{n \rightarrow \infty} \sup l_{k-1} n \cdot E_{n}^{\rho(k) / n} 2^{\rho(k)}=\tau(k) . \tag{29}
\end{equation*}
$$

By (28), we have

$$
\begin{aligned}
\varliminf_{n \rightarrow \infty}\left(\frac{2 E_{n}^{1 / n}(f)}{\left|a_{n}\right|^{1 / n}}\right) & =\lim _{n \rightarrow \infty}\left(\left(\frac{n}{\rho e}\right)^{1 / p} \frac{2 E_{n}^{1 / n}(f)}{\mid a_{n} 1^{1 / n}}\left(\frac{\rho e}{n}\right)^{1 / p}\right) \\
& \leqslant \lim _{n \rightarrow \infty} 2\left(\frac{n}{\rho e}\right)^{1 / p} E_{n}^{1 / n}(f) \lim _{n \rightarrow \infty} \frac{1}{\left(n /\left((\rho e)^{1 / \rho}\left|a_{n}\right|^{1 / n}\right.\right.} \\
& \leqslant\left(\frac{\omega(1)}{\omega(1)}\right)^{1 / p}=1
\end{aligned}
$$

Similarly, we can show that

$$
\begin{aligned}
& \varliminf_{n \rightarrow \infty} \frac{2 E_{n}^{1 / n}(f)}{\left|a_{n}\right|^{1 / n}} \geqslant\left(\frac{\omega(1)}{\tau(1)}\right)^{1 / p} \\
& \varlimsup_{n \rightarrow \infty} \frac{2 E_{n}^{1 / n}(f)}{\left|a_{n}\right|^{1 / n}} \leqslant\left(\frac{\tau(1)}{\omega(1)}\right)^{1 / \beta}
\end{aligned}
$$

Hence the result if $k=1$. Similatly, we can prove it if $k \geqslant 2$.
Remark. We have from (27), for $k=1$,

$$
\lim _{n \rightarrow \infty} \sup \frac{2 E_{n}^{1 / n}(f)}{\left|a_{n}\right|^{1 / n}} \leqslant\left(\frac{\tau(1)}{\omega(1)}\right)^{1 / p}
$$

If f is such that $\tau(1)<2 \omega(1)$, then

$$
\lim _{n \rightarrow \infty}\left(E_{n}(f) /\left|a_{n}\right|\right)=0
$$

In other words, for functions f whose type is less than twice their lower type, $\lim _{n \rightarrow \infty}\left(E_{n}(f) / \mid a_{n} \|\right)=0$.

Theorem 10. Let $f(z)=\sum_{k=0}^{\infty} a_{i} z^{k}$ be an entire function of logarithmic order ρ_{i}, with corresponding types τ_{l}, ω_{l}. Then, if $\left|a_{n} / a_{n+1}\right|$ and $E_{n}(f) / E_{n+1}(f)$ are nondecreasing for $n \geqslant n_{0}$, we have

$$
\begin{equation*}
\left(\frac{\omega_{l}}{\tau_{l}}\right)^{1 /\left(p_{l}-1\right)} \leqslant \lim _{n \rightarrow \infty} \frac{\log E_{n}(f)}{\log \left|a_{n}\right|} \leqslant 1 \leqslant \lim _{n \rightarrow \infty} \frac{\log E_{n}(f)}{\log \left|a_{n}\right|} \leqslant\left(\frac{\tau_{l}}{\omega_{l}}\right)^{1 /\left(p_{l}-1\right)} \tag{30}
\end{equation*}
$$

Proof. It is known, under our assumptions [3, Theorem 7] that

$$
\begin{align*}
\lim _{n \rightarrow \infty} \sup _{\inf } \frac{\left(n / \rho_{l}\right)^{\beta_{2}}}{\left[\left(-\log E_{n}(f)\right) /\left(\rho_{i}-1\right)\right]^{p_{i}-1}} & =\tau_{l} \\
& \omega_{i} \tag{31}\\
& =\lim _{n \rightarrow \infty} \sup \frac{\left(n i \rho_{l}\right)^{a_{i}}}{\left[\left(-\log !a_{n}\right) /\left(\rho_{l}-1\right)\right]^{p_{i}-i}}
\end{align*}
$$

With some manipulation of (31), one obtains the required result (30).

Theorem 11. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $g(z)=\sum_{k=0}^{\infty} b_{k i} z^{k}$ be two entire functions of the same positive order and of regular growth. There exists a sequence of positive integers $\left\{n_{p}\right\}_{1}, n_{p} \rightarrow \infty$, such that

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{\log E_{n_{p}}(f)}{\log E_{n_{p}}(g)}=1 \tag{32}
\end{equation*}
$$

Proof. From [3, Theorems 1, 2a, 2b], [6, p. 44], and the existence of a sequence of positive integers $\left\{n_{p}\right\}$ such that $n_{p} \rightarrow \infty$ and

$$
\lim _{p \rightarrow \infty} \frac{\log n_{p+1}}{\log n_{p}}=1
$$

we infer

$$
\lim _{p \rightarrow \infty} \frac{n_{p} \log n_{p}}{\log \left[1 / E_{n_{p}}(f)\right]}=\rho=\lim _{p \rightarrow \infty} \frac{n_{p} \log n_{p}}{\log \left[1 / E_{n_{p}}(g)\right]}
$$

Now we have the required result (32), as in the case of Theorem 6.
THEOREM 12. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z_{k}$ and $g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ be two entire functions of perfectly regular growth (ρ, τ). Then there exists a sequence of positive integers $\left\{n_{p}\right\}_{1}^{\infty}\left(n_{p} \rightarrow \infty\right)$ such that

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left(\frac{E_{n_{p}}(f)}{E_{n_{p}}(g)}\right)^{1 / n_{p}}=1 \tag{33}
\end{equation*}
$$

Proof. This theorem follows, as Theorem 7, by using [3, Theorem 3]; hence we omit a detailed proof.

Example. Let $f(x)=e^{z \pi / 4}, g(z)=\cos \pi z / 4$. Then f and q are entire functions of perfectly regular growth $(1, \pi / 4)$. It is known [2, p. 80] that

$$
\frac{1}{2^{n}(n+1)!}\left(e^{-\pi / 4}\right) \leqslant E_{n}\left(e^{z \pi / 4}\right) \leqslant \frac{1}{2^{n}(n+1)!}\left(e^{\pi / 4}\right)
$$

and

$$
\frac{\pi^{2 m+2}}{2^{6 m+5}(2 m+2)!} \leqslant E_{2 m+1}\left(\cos \frac{\pi z}{4}\right) \leqslant \frac{\pi^{2 m+2}}{2^{6 m+5}(2 m+2)!}
$$

From these inequalities one infers, taking $n_{p} \equiv 2 p+1$, that

$$
\lim _{p \rightarrow \infty}\left(\frac{E_{n_{p}}(f)}{E_{n_{p}}(g)}\right)^{1 / n_{p}}=1
$$

Theorem 13. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ be two enike functions of index k, orders $\rho_{f}(k), \rho_{g}(k)$ and lower orders $\lambda_{f}(k), \lambda_{g}(k)$. If $E_{n}(f) / E_{n+1}(f)$ and $E_{n}(g) / E_{n+1}(g)$ are nondecreasing for $n \geqslant n_{0}$, thent
$\frac{\lambda_{f}(k)}{\rho_{g}(k)} \leqslant \lim _{n \rightarrow \infty} \inf \frac{\log E_{n}(f)}{\log E_{n}(g)} \leqslant \frac{\lambda_{f}(k)}{\lambda_{g}(k)} \leqslant \lim _{n \rightarrow \infty} \sup \frac{\log E_{n}(f)}{\log E_{n}(g)} \leqslant \frac{\rho_{f}(k)}{\lambda_{g}(k)}$.
Proof. We have from [3, Theorems 1, 2], under the additional assumptions that $E_{n}(f) / E_{n+1}(f)$ and $E_{n}(g) / E_{n+1}(g)$ are nondecreasing for $n \geqslant n_{0}$, that

$$
\begin{align*}
& \rho_{y}(k) \tag{35}\\
& \lambda_{g}(k)
\end{aligned}=\lim _{n \rightarrow \infty} \sup _{\inf } \frac{n l_{k} n}{\log \left[1 / E_{n}(f)\right]}, \quad \begin{aligned}
& \rho_{g}(k) \\
& \lambda_{g}(k)
\end{align*}=\lim _{n \rightarrow \infty} \sup \inf \frac{n i_{k} n}{\log \left[1 / E_{n}(g)\right]}
$$

The required result follows from (35), as in the proof of Theorem 8.
EXAMPLE. Let $f(z)=e_{k}(z), g(z)=e_{k}\left(z^{h}\right) ; h$ is any positive integer (e.g., $e_{2}(z)=e^{e^{z}}$). Then

$$
\lim _{n \rightarrow \infty}\left(\frac{\log E_{n}(f)}{\log E_{n}(g)}\right)=\frac{1}{h}
$$

Theorem 14. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ be two entive functions with index k, orders $\rho_{f}(k)$ and $\rho_{g}(k)$, and the associated numbers $\tau_{f}(k)$, $\omega_{f}(k)$ and $\tau_{g}(k), \omega_{g}(k)$. If $E_{n i}(f) / E_{n+1}(f)$ and $E_{n}(g) / E_{n+1}(g)$ are nondecreasing for $n \geqslant n_{0}$, then

$$
\begin{align*}
\frac{\omega_{f}(k) \rho_{g}(k)}{\tau_{g}(k) \rho_{f}(k)} & \leqslant \lim _{n \rightarrow \infty} \inf \frac{E_{n}(f)^{a_{f}(k) \cdot n}}{E_{n}(g)^{\left.\rho_{g}(k)\right]_{j}^{\prime n}}} \leqslant \frac{\omega_{f}(k) \rho_{g}(k)}{\omega_{g}(k) \rho_{f}(k)} \\
& \leqslant \lim _{n \rightarrow \infty} \sup \frac{\left\{E_{n}(f)^{\rho_{j} / n}\right.}{\left\{E_{n}(g)^{\rho_{g} / n}\right.} \leqslant \frac{\rho_{f}(k) \tau_{g}(k)}{\rho_{f}(k) \omega_{g}(k)} . \tag{36}
\end{align*}
$$

Proof. By [3, Theorems 3, 4], we have, for $k=1$:

$$
\begin{gather*}
\tau_{f}=\tau_{f}(k)=\lim _{n \rightarrow \infty} \sup \frac{n}{\inf _{f} e} E_{n}(f)^{\rho_{f} \cdot n}, \tag{37}\\
\omega_{f}(k) \\
\tau_{g}=\lim _{n \rightarrow \infty} \sup _{\inf } \frac{n}{\rho_{g} e} E_{n}(g)^{g_{g} \cdot n} .
\end{gather*}
$$

For $k \geqslant 2$,

$$
\begin{align*}
\tau_{f}(k) & =\lim _{n \rightarrow \infty} \sup _{\inf _{f}\left(l_{k-1} n\right) E_{n}(f)^{\alpha_{f}(k): n}}, \tag{38}\\
\tau_{g}(k) & =\lim _{n \rightarrow \infty} \sup _{\inf }\left(l_{k-1} n\right) E_{n}(g)^{\rho_{g}(k): n} .
\end{align*}
$$

One derives the required result from (37) and (38).

Remark. Let $f(z)=e^{z}, g(z)=e^{2 z}$. For these two functions, $\rho_{f}=1$, $\rho_{g}=1, \tau_{f}=\omega_{f}=1, \tau_{g}=\omega_{g}=2$. We have, from (36), for these functions,

$$
\lim _{n \rightarrow \infty}\left(\frac{E_{n}^{1 / n}(f)}{E_{n}^{1 / n}(g)}\right)=\frac{1}{2} .
$$

Hence

$$
\lim _{n \rightarrow \infty}\left(E_{n}(f) / E_{n}(g)\right)=0
$$

This result is sharper than the one obtained by Bernstein [2, Theorem 59].
Theorem 15. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ to two entire functions with index k and orders $\rho_{f}(k), \lambda_{f}(k), \rho_{g}(k), \lambda_{g}(k)$. Assume that $E_{n}(f) / E_{n+1}(f)$ and $E_{n}(g) / E_{n+1}(g)$ are nondecreasing for $n \geqslant n_{0}$. If $\rho_{f}(k)=0$ and $\lambda_{l}(f)>1$, then

$$
\frac{\lambda_{g}(k)}{\rho_{l}(f)-1} \leqslant \lim _{n \rightarrow \infty} \inf \frac{\log E_{n}(f)}{\log E_{n}(g)}
$$

and

$$
\frac{\rho_{g}(k)}{\lambda_{l}(f)-1} \leqslant \lim _{n \rightarrow \infty} \sup \frac{\log E_{n}(f)}{\log E_{n}(g)} .
$$

If $\rho_{g}(k)=0$ and $\lambda_{f}(k)>0$, then

$$
\lim _{n \rightarrow \infty} \frac{\log E_{n}(f)}{\log E_{n}(g)} \leqslant \min \left\{\frac{\lambda_{l}(g)-1}{\lambda_{f}(k)}, \frac{\rho_{l}(g)-1}{\rho_{f}(k)}\right\}
$$

and

$$
\lim _{n \rightarrow \infty} \sup \frac{\log E_{n}(f)}{\log E_{n}(g)} \leqslant \frac{\rho_{l}(g)-1}{\lambda_{j}(k)}
$$

Proof. By [3, Theorems 1, 2, 5, 6]

$$
\begin{gather*}
\begin{array}{c}
\rho_{y}(k) \\
\lambda_{f}(k)
\end{array}=\lim _{n \rightarrow \infty} \sup _{\inf } \frac{n l_{k} n}{\log \left[1 / E_{n}(f)\right]}, \quad \begin{array}{l}
\rho_{g}(k) \\
\lambda_{g}(k)
\end{array}=\lim _{n \rightarrow \infty} \sup \frac{n l_{k} n}{\log \left[1 / E_{n}(g)\right]} \\
\rho_{l}(f) \tag{40}\\
\lambda_{l}(f)=\lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \left\{1 / n \log \left(1 / E_{n}(f)\right)\right\}}, \\
\rho_{l}(g) \\
\lambda_{l}(g)
\end{gather*}=\lim _{n \rightarrow \infty} \sup _{\inf \frac{\log n}{\log \left\{1 / n \log \left(1 / E_{n}(g)\right)\right\}}} .
$$

(39) follows from (40) by some manipulations which we omit. The rest follows similarly.

ThEOREM 16. Let $f(x)=\sum_{k=0}^{\infty} a_{k} z^{k}\left(a_{\mathrm{k}}\right.$ real) be an entire function with index $k \geqslant 1$, order $\rho(k)$ and lower order $\lambda(k)$. If $E_{n}(f) / E_{n+1}(f)$ and $\left|a_{n} / a_{n-1}\right|$ are nondecreasing for $n \geqslant n_{0}$, then we have

$$
\begin{align*}
\frac{\lambda(k)}{\rho(k)} & \leqslant \lim _{n \rightarrow \infty} \inf \frac{\log E_{n}^{1 / n}(f)}{\log \left[E_{n+1}(f) / E_{n}(f)\right]} \\
& \leqslant 1 \leqslant \lim _{n \rightarrow \infty} \sup \frac{\log E_{n}^{1 / n}(f)}{\log \left[E_{n+1}(f) / E_{n}(f)\right]} \leqslant \frac{\rho(k)}{\lambda(k)} \\
\frac{\lambda(k)}{\rho(k)} & \leqslant \lim _{n \rightarrow \infty} \inf \frac{\log \left[E_{n+1}(f) / E_{n}(f)\right]}{\log \left|a_{n}\right|^{1 / n}} \\
& \leqslant 1 \leqslant \lim _{n \rightarrow \infty} \sup \frac{n \log \left[E_{n+1}(f) / E_{n}(f)\right]}{\left.\log \mid a_{n}\right]^{1 / n}} \leqslant \frac{\rho(k)}{\lambda(k)}, \tag{41}\\
\frac{\lambda(k)}{\rho(k)} & \leqslant \lim _{n \rightarrow \infty} \inf \frac{\log \left[E_{n+1}(f) / E_{n}(f)\right]}{\log \left|a_{n+1} / a_{n}\right|} \\
& \leqslant 1 \leqslant \lim _{n \rightarrow \infty} \sup \frac{\log \left[E_{n+1}(f) / E_{n}(f)\right]}{\log \left|a_{n+1} / a_{n}\right|} \leqslant \frac{\rho(k)}{\lambda(k)},
\end{align*}
$$

and

$$
\frac{\lambda(k)}{\rho(k)} \leqslant \lim _{n \rightarrow \infty} \inf \frac{\log E_{n}^{1 / n}(f)}{\log \left|a_{n+1} / a_{n}\right|} \leqslant 1 \leqslant \lim _{n \rightarrow \infty} \sup \frac{\log E_{n}^{1 / n}(f)}{\log \left|a_{n+1} / a_{n}\right|} \leqslant \frac{\rho(k)}{\lambda(k)}
$$

Proof. By Lemmas 1, 2 and Theorems 3, 4,

$$
\begin{align*}
& \rho(k) \tag{42}\\
& \lambda(k)
\end{align*}=\lim _{n \rightarrow \infty} \sup _{n f} \frac{n l_{k} n}{\log \left[1 / E_{n}(f)\right]}=\lim _{n \rightarrow \infty} \sup _{\inf } \frac{l_{k} n}{\log \left[E_{n}(f) / E_{n+1}(f)\right]}
$$

and

$$
\frac{\rho(k)}{\lambda(k)}=\lim _{n \rightarrow \infty} \sup _{\inf } \frac{n l_{k} n}{\log \left|1 / a_{n}\right|}=\lim _{n \rightarrow \infty} \sup _{\inf } \frac{l_{k} n}{\log \left|a_{n} / a_{n+1}\right|}
$$

(41) follows, using some manipulations, from (42).

The proof of the remaining assertions is similar and omitted.

Acknowledgment

I would like to thank the referee for his comments.

References

1. S. N. Bernstern, "Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réele," Paris, 1926.
2. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," Springer-Verlag, New York, 1967.
3. A. R. Reddy, Approximation of an entire function, J. Approximation Theory 3 (1970), 128-137.
4. S. M. Shaf, On the lower order of integral functions, Bull. Amer. Math. Soc. 52 (1946), 1046-1052.
5. J. Shohat, The best polynomial approximation of functions possessing derivatives, Duke Math. J. 8 (1941), 376-385.
6. G. Valiron, "Lectures on the General Theory of Integral Functions," Chelsea, New York, 1949.
7. R. S. Varga, On an extention of result of S. N. Bernstein, J. Approximation Theory 1 (1968), 176-179.
8. M. Ahmed, On entire functions of infinite order, Compositio Math. 13 (1955-56), 159-172.

[^0]: ${ }^{1}$ A slightly different classification has been studied in [8].

[^1]: ${ }^{2}$ The functions $f(x)=e^{x}, g(x)=\cos x$ satisfy this property (cf. the example following Theorem 12).

