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Let f(x) be a real-valued continuous function on [—1, 1], and let
En(f) = 1}27-{‘ ”f_ p H: = Oa i: 25“*;

where the norm is the uniform norm on [—1, 1] and 7, denotes the set of all
polynomials with real coefficients of degree at most #. Bernstein [1, p, 1i8]
has shown that

Um EX"(f) =0 {13
if and only if f{x) is the restriction to [—1, 1] of an entire function.

Let f(z) be an entire function, and let

M(r) = max | f(z)];

|z}=r

then the order p, lower order A, type 7 and lower type w of f (z) are defined by

i SUP log log M(r) _P
oo inf log r

>

lim

sup log M(l) T D <p
o inf r° w ( Sw

< @
0 < < O’J) ’
S. N. Bernstein [1, p. 114] proved that there exist (finite) constants p > 0,
0 < 7 << o0 such that

lim sup n*/? L/ f) 3)

is finite if and only if £ (x) is the restriction to [—1, 1] of an entire function of
order p and type 7.
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Recently, Varga [7, Th. 1] has proved that

__nlogn
P = 10 SUP ToQlE (AT

satisfies 0 <C p < o0 if and only if f(x) is the restriction to [—1, 1] of an
entire function of order p.
The results of Bernstein and Varga give us the clue that the rate at which
EY™(f) tends to zero depends on the order and type of an entire function.
To deal with functions of infinite order, we introduce the following
classification!. We shall assume for such a function, that there exists a
positive integer k = 2, for which

“)

sup lpy M(r) _ pl(k)
e inf logr = AK) ©)

are finite and positive. Here we have used the familiar notation

Lx = log log -log x k=12,3,.)
times
Note that Ix > 0 for all sufficiently large x. An entire function f(z) with
plk — 1) = o and p(k) < oo is called an entire function of index k. Note
that p(k) and A(k) generalize p and A of (2), which correspond to k& = 1. If
p(k) is positive and finite, we can associate with it the functionals
7(k,f) = (k) and w(k, f) = w(k), defined by

sup LM(r) (k)
n inf et w(k) ©)

Another classification has been introduced for the class of (transcendental)
entire functions of order 0, by means of the logarithmic order p; and the
corresponding lower order A, . They are defined thus:

sup log log M(r) _ p,
M5 inf loglogr =~ X @)

I<A<p < o).

If p; is greater than one and finite, we can define the logarithmic type =, of f
and the corresponding lower type w; , by

m SUp log M(r) =,
% inf (logr)r — o/

®)

1 A slightly different classification has been studied in [8].
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The following result is also due to S. N. Berunstein {2, p. 77, Theorem 391
Let f(x) and g(x) be real-valued functions with continuous {n -+ 1-th
derivative on the interval [—1, 1] and let

| Fi{x)] < g"*{x) throughout [—1, 1].
Then
E(f) < Eg) )
Bernstein [1, p. 116] also proved that, if /(&) = Y, a:Z* is an entire
function satisfying

lim nt?q, 7 =0, {10}y

a2

then there exists a subsequence (#y,n;,..5 of (0,1,2,..) such that
| apit | 5= 0and

2WE,

friyss | @t [

P
e
[y

S

One of the purposes of this paper is to investigate under what conditions
on E,.(f), fis the restriction to [—1, 1] of an entire function of order < | or
order 1 and type 0. We study also how E,(f)/E,..(f) is related to p, py, p(%},
+, 7y , and (k). Further, we prove the last result of Bernstein for a wider class
of functions, namely, for entire functions of perfectly regular growth [6,p.44%
For entire functions of order 0 or o0, we study the growth of E,(f)and | a,, | -
Furthermore, we study the following problem, related to the well-known
results of Bernstein and Shohat [5, p. 379]. Given two entire functions
F(2) = Yo 252, 8(2) = Yo biz®, with respective orders and types p;, Ay »
Tr,wr, and p,, A, , 7., w, , What is the relation between E.(f)/E.{g) and
these orders and types? The bounds we obtain here are much sharper than
those of Bernstein and Shohat.

Entire functions of regular growth
DerratioN.  An entire function f'is of regular growth [6, p. 411 if

lim Joglog M(r) _ |
= log » :

exists. A necessary and sufficient condition that an entire function f be of
regular growth is that the coeflicients g, satisfy, for every ¢ > 0, the inequality

| a, /7 < p~t/ere for ail large n,
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and that there exist a strictly increasing sequence {n,}7 of positive integers
such that

lognyyy _

and
= logn,

_nplogn,
}hr log | l/ay,, P (12

Entire functions of perfectly regular growth

It is known that an entire function is of perfectly regular growth (p, 7),
0<p<w,0<7<<oo,if and only if, given € > 0, there exists an ny(e)
such that

% la, o/ <7+ e for n = nyle)

and there exists a strictly increasing sequence {n,)7y of positive integers such
that

n
lim 2 — 1 and
e H,

=z plag __
lim 721 a,, """ = . (13)

We shall need several lemmas,

LevMa 1. Let f(2) = Z:;O az* be an entire function of index k, order
plk) and lower order Mk) (0 << Mk) < p(k) << ). Then

.. 1 s lwn
lim inf ——& —— < lim mf———"——
2o lo og I an/an+1 I Lo I 1/an I

< Ak)

i - L
< Iim .
[ 1/a, | 7w 10g | Gp/Gnay |

< p(k) = lim sup §Og

Proof. The result is known for the case k == 1 [4, p. 1046]. The middle
inequality is known for k > 1 [3, Lemmas [ and 2A]. The extreme inequalities,
when k& > 2, follow as for the case k = 1, and hence we omit the proof.

Lemma 2. Ler f(z) = Z;::o a;z% be an entire function of index k, with
lower order Mk), such that | a, |]| 0,1 | is nondecreasing for n > ng . Then

g Ml L
A(k) = lim inf g Ta, ]~ lim inf log | duftnis |’
log n

plk) = lim sup fo s, e
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Proof. This lemma is known for when & = I [4, p. 1047]. The proof
when & > 2, proceeds as in the case k = 1, using [3, Lemmas 1, 2B].

LevMma 3. Let f(z) = Z‘,f:(, ayz® be an entire function of logarithmic order
o, and logarithmic lower order A, . Then

o log 7 . log n
b inf o Tor aain ] ~ A i T Tog | 12, 1)

) . logr
ShT s S g Tog [T

. log n
< —_— e,
< VRSP Tog log i |

Proof. See [3, Lemmas 5, 6A].
LemMA 4. Let f(z) = Z;:O a,z® be entire function of order p; and lower

order A(1 < A, < py < o0) such that | a,fa,. | is nondecreasing for in > ny .
Then

log n . logn
b i g Tog | 7, 1~ A% ™ ogTog [ a i
— 1 = lim su log n

w5 SUP TogTog | anjan i |

Preoof. See [3, Lemmas 5, 6B].

THEOREMS

THEOREM |. Let f(x) be a real-valued continuous function defined on
I—1,1]. Then

hm nEV"(f) =0 {14)
if and only if f(x) is the restriction to [—1, 1] of an entire function of either
order <1, or of order 1 and type 0.

Proof. 1If f(x) is the restriction to [—1, 1] of an entire function of order p
and type 7, then it is known [3, Theorems 1, 3; 7, Theorem] that

lim su n log

u’n o
ISP oy~ PSP B =

S

and hencs

EY*(fy < n7V/iore) for n = n(e).

640/5/1~9



102. REDDY

Therefore,

-1
nEYV*(f) <n e, for n = n(e).

Hence, if p<l1
lim nEZ/"(f) = 0.

If p = 1 and = = 0, we have lim,,,, nEX" = 0, by the second equality of this
proof. On the other hand, if lim,_,, #EY"(f) = 0, then lim,_, EY" = 0,
which indicates, because of Bernstein’s theorem, that f(x) is the restriction to
[—1, 1] of an entire function. We have to show that the order of this entire
function is either less than one or one, with type 0. One can verify that

. nlogn
PSP TogE(Y <

Hence, either p < 1, or p == 1 and the type is zero.

THEOREM 2. Let f(x) be a real-valued continuous function defined on
[—1, 1). If f(x) is the restriction to [—1, 1] of an entire function of mdex k,
order p(k) and lower order k), then

.. Lin . -Ln
I o E BT < M ™ ety T < A
Lin

< k) < limy sup Joer o E AT

Proof. Assume that f(x) has an extension f(z) which is an entire function
of index k with lower order A(k). Then it is known [3, (11), (17)] that

M (T) < B < M (T3, (s)
B(©) < C'oH(o) < C'o(o + 1) Blo + 1), (16)

where C’, C", » are constants and B(c) is the maximum of | f(z)| on E,
(6 > 1), the closed interior of the ellipse with foci 41, major semiaxis
(0? + 1/2¢) and minor semiaxis (¢ — 1/20). It is also known [3, (18)] that

plk, i) __ — fim sup 11c+iM(U) — lim sup /.;B(0)
Mk,j)  oow inf l,-+1o oo inf  [40

— i WP () fg,,pn) a7

oo inf l 10 n—0
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forany k > 1,j > 1. Now, applying Lemma 1 to H{(c) of [3, (16)], we have
the required result.

TuroOReM 3. Let f(x) be a real-valued continuous funcrion on [—1, 1]
Then if f(x) is the restriction to [—1, 1] of an entire function of index k, order
p(k) and lower order Mk) such that E,( )/ E,.A{ f) is nondecreasing for n = ny,*
then

Zln < s i;ff
M) = lim inf yoomp oy = lim inf oo Ay

Ln 1N
P = 5 P Tog B PV B ] w

Proof. We apply Lemma 2 to H(o).

TaEOREM 4. Let f(x) be a real-valued continuous function defined on
[—1, 1] which is the restriction to [—1, 1] of an entire function f(z) of logarith-
mic order p, and logarithmic lower order X, . Then

logn

lim inf log

N I e Toe B, (A Em (]~ W inf

< £
nswn o logilfn log[l/E(F T

<h—1<p—1

<

im logn
nsw0 Sup log lOg n( )/Er-f—l(f\’]

Proof. We have from (17)

. sup LH(o) _ py
Mmoo

{19)
One deduces the required result from (19} by applying Lemma 3 to H{c).

THEOREM 5. Let f(x) be real-valued continuous function on [—1, 1] which
is the restriction to [—1, 1] of an entire function f(z) of logarithmic order p; and
logarithmic lower order A, such that E(f)/E..a(f) is nondecreasing for
n = ny. Then

log n
R I
= lim inf log 1
n-% lOg lOg[En(f)/En+1(f)] ’
fogn
— 1 = lim sy

n->0 p lo og IOg[Er(f)/En—il(f)}

2 The functions f(x) = &%, g(x) = cos x satisfy this property (cf. the example following
Theorem 12).
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Proof. 1t is known from (17) that

. sup LH(oc) _ p,
L

Applying Lemma 4 to H(c), we have the result.

THEOREM 6. Let f(z) = Yp o a12* be an entire function of positive order
and regular growth with real a,’s. Then there are integers 1 < ny <n, < -
such that

togbu, 20
pl_r’gl()g]an,,[_ ’ (20)

Proof. Since f(z) is of regular growth, we have from [3], Theorem I,
and the existence of integers 1 < n, < n, < - satisfying

G-

o log n,
the equalities
n,logn . nylogn
lim —2 28 i —2 o 21
P lOg! l/anp l P P IOg(l/E"p) ( )
By (21),
@%2 < logbvl— < "Llo:ggfi for p = pole)
PR - s (22)
1117_1‘2% 1 n,log n,
p+e \IOglanp|< p—€ for p =@

From (22), for a suitable ¢,

o< B8 e >
— € .\m\ —I—G, or p/max(po,pl).

Hence,

log E,,

m——- =
7= log | Ay, |
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THEOREM 7. Let f(2) = i @z* be an entire fumction of pef*f’ecfh‘
iegulal growth with real a,’s. Then, for some sequence of iniegers {n,}
1 <y <y, we have

;,.)—

Eﬂ 1/ny 1
bm z = 23}
oo \ | dy | 2

Proof. 1t is known [3, Theorem 3] that if f(z} is of perfectly regular
growth, then

n>E M50

. n
1m’1-la [?" = lim 2°— EV/* = =
pe

It is also known [6, p. 44] that there exists a sequence {n,}7 of positive
integers, n, — <o, such that

n,
lim =2 — 1
f:a1- nﬂ

and

fﬂa . — o n / s
lim 22 | a, 7" = 7 = lim 2° 22 (E, (/)" (

From (24) one has
pelr — €y 27° nﬁ,E”’”P {7+ € pe2™  for p > pye)
and
pe(t — e) <myla, "™ < (r+e)pe  for p=ple),
and hence
lim (£l @y, V™ = &

THEOREM 8. If f(z) = Yo @z (a, real) is an entire function of

index k, order p(k) and corresponding lower order X(k) such thar | 0,08, |

and E{ ) En (f) are nondecreasing for n = ny and n > ny , respectively,
then

Ak) . log E.{f) , log E(fy _ plk

—t e L] e S Nk

i < Im it TR < < g PEE < K
Remark. There exists an entire function f{(z) = ¥ ,.p @:2" for which

la,/a,.4 | s nondecreasing and p > A ([4], p. 1047).
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Proof of Theorem 8. It is known from {3, Lemmas 1, 2, Theorems 1, 2]
and the fact that E,( f)/E, (/) and | a,/a,_ | are nondecreasing for n > n,’
that

.osup  nbn  p(k)
WM inf Tog [ 1jan] — Ak
sup nhan _plh) @5)

M0 inf Togll/EL(] — A
By using (25) and

log E’n(f) — log(l/En(f)] . n[kn (26)
loga, log(1/a,) nlp ’
we have
nhyn . log[l/E.(f)]
i fog [ 1/a, AR ™ wi
. log E(f) _ = log[l/E.(f)] .. nlyn
S TogTa,l ST b B iogi/a,
— log £.(f) _ 7= logll/En(f)] w=  nbn
< }11—13010 logla,| }zlw nln n log | 1/a, |’

and the result follows.

THEOREM 9. Let f(z) = Z;::O a,z* (a real) be an entire function of index
k, order p(k) and types 7(k), w(k) (0 < w(k) < o©). Assume that E,(f)/E,.1(f)
and| a, ||| a,., | are non-decreasing, for n = ny . Then fork = 1,

w(k) oW o 2E)™(f) 2E(f) _ ( (k) \1iet
(T(k)) S lim —2h < LD <(w(k)) . @)

N> lan n->00 l n llln

Remark. The entire function f(z) = ¥, 4 (log nfn)e/*z» (p > 0) has
order p and type co. For this function f we can use Theorem 8 to relate

E(f)and |a,].

Proof of Theorem 9. From [3, Lemma 3 and Theorem 3] and the mono-
tonicity of E,(f)/E,:(f) and | a,, |/| @,y | we have, ifk = 1,

lim sup = | a, """ = lim sup E"”"Z" = (28)

For any k > 2 (cf. [3)),

lim sup 47 - | a, ) /n — lim sup _yn - E2W o o ), (29)
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st
o

By (28), we have

. 2E1/n(f) . n \1/e ZE)E;M(J.;\' ( pe \ ey
lim (o) = tm () o (5))
<lm2 (55) " 5O I Gramra o
; (1) ife .
<| Z{x)) =

Similarly, we can show that

. 2EY™f) w(l) e
tim 5 > ()
o 2EXMf) ¢ w(1) \Me
Im = i S a}(l)) '

Hence the result if & = 1. Similarly, we can prove it if & > 2.
Remark. We have from (27), for k = 1,
1ing £ < 1/e
L) (D)

PRSP TSR S V)

If fis such that 7(1) < 2a(1), then
lim (Ex(f)/| an [} = 0.

In other words, for functions /' whose type is less than twice their lower type,
iy (Ex(f)/| @ ) = 0.

THeoREM 10. Let f(2) = Z;::o mz* be an entire function of logarithmic
order p,, with corresponding types v, w;. Then, if | a,/a,.; { and E () E.{)
are nondecreasing for n = n, , we have

1/{p;—1) 1fp~1)
(_g{q < Tim 108 £x(/) <1<1—if510§5n(f) <(_T;_) _

298 3
T S e logla, ] new log|a, | w; (30)
Proof. Itis known, under our assumptions [3, Theorem 7] that

Him S}lp (n/py)™ T

we inf [(—log £,/ N/(p, — DI w,

. Tie SUP {njp)™
= U ot T—Tog Tay D(ps = P
31

With some manipulation of (31), one obtains the required result {30).
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THeOREM 11. Let f(z) = Z:;o a,z% and g(z) = Yp.o buz* be two entire
Junctions of the same positive order and of regular growth. There exists a
. . o
sequence of positive integers {n,}; , n, — 0, such that

Iog E,(f)

M g B ) - 2

Proof. From [3, Theorems 1, 2a, 2b], [6, p. 44], and the existence of a
sequence of positive integers {n,} such that n, — oo and

logn
m o1

= logn,

b4

we infer

. n, logn, . n,logn
lim ~—F— = p = lim -—% 2
r>o 10g[1/E,, I/Enp(f)] P T e log[l/E, ()]

Now we have the required result (32), as in the case of Theorem 6.

THEOREM 12. Let f(z) = Yro axz and g(z) = Z,n;o b,z" be two entire
Sfunctions of perfectly regular growth (p, ). Then there exists a sequence of
positive integers {n,}, (n, — o) such that

E,(f) \ 1
(£

lim ) 1. (33)

po>x©

Proof. This theorem follows, as Theorem 7, by using [3, Theorem 3];
hence we omit a detailed proof.

Example. Letf(x) = e*/4, g(z) = cos wz/4. Then fand g are entire func-
tions of perfectly regular growth (1, #/4). It is known [2, p. 80] that

1 1
_ (T /A Zm [4 e (pm/&
e €D S B S sy 69
and

77.2m+2

28m+5(2py - 2)1 T

) 772771+2

wZ
< Eania (cos ) < Ty P

From these inequalities one infers, taking #, = 2p + 1, that

: En(f) \tme
[ (Ep(g)) =

p>®
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TreeorReM 13, Let f{z) = Z,i(, az®, glz) = Z,ig bpz¥ be two  entive
Junctions of index k, orders pAk), pfk) and lower orders ALk}, M ik).
If EE.:(f) and E(g)/E,,1(g) are nondecreasing for n = ny , then
M) _ o Tog B _ AR _ log Eu(f) _ pitk)

<1 < s < .
pok) S AR E (O S 0 = AP T E (o) S A

{34)

Proof. Wehave from [3, Theorems 1, 2], under the additional assumptions
that E (/) E,.(f) and E (2)/E,..(g) are nondecreasing for # > ny, , that

prlkY i sup_ mln po(k) _ o sup il
AGk)  wew inf logll/EL()]”  Afk) — av= inf log{l/E.(g)]

{35)
The required result follows from (35), as in the proof of Theorem 8.

ExampLE. Let f(2) = elz), g(z) = e{z"); i 1s any positive integer
(e.g., exz) = e¥). Then
I ( log E,(f)y 1
log E(gY /] h°

20

THEOREM 14. Let f(2) = Sy anz®, g(2) = oo biz® be two entive func-
tions with index k, orders pJk) and pk), and the associated numbers =k},
w(k) and v,(k), w, (k). If E,(f)/E.a(f) and E (g} E, (g) are nondecreasing
forn = mny, then

w (k) py(k) ELN" _ k) p(k)

< lim i
) i) S M inf T e S ) i)
{EL prk) 7,(k) .
3 < ; {
%1_{‘1% sup {E (g (k) w,(k) {36}
Proof. By [3, Theorems 3, 4], we have, for k = 1:
Ty == ’rf{k) . sup .’? ( £V ra
Wy == Luf(k) ¥11-x mf En\f} " (”1"\,1
514
sup # - '
wg = lim inf p E"( y
Fork =2
Tf(k) Sup (1& 1}73 E (f)uf(n) 7
[#3] (k} n—):c
e (38
kY .. sup ’

o pn(i\ 13
w (k) fim © ¢ (Geam) Enl)”

One derives the required result from (37) and (38).
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Remark. Let f(z) = e?, g(z) = €**. For these two functions, p; = 1,
py = 1,7 = w; = 1, 7, = w, = 2. We have, from (36), for these functions,

BNy 1
im (_E;/ﬂ(g) ) =2
Hence

%&1}0 (En(f )/ En(g)) = 0.

This result is sharper than the one obtained by Bernstein [2, Theorem 59].

THEOREM 15. Let f(z) = Yh o 12", 8(2) = S0 buz® to two entire func-
tions with index k and orders pik), Alk), pygk), AJfk). Assume that
E(f)Ewf) and E,(8)/Esi(g) are nondecreasing for n = ny . If pik) = 0
and A(f) > 1, then

MO log Eu(f)
» o) — 1 S i1 T (o) .
39
p®) . log Ef)
Al(f) — 1 S !’1_'1’13 sup log En(:o;)_ )

If p(k) = O and A(k) > 0, then

. log E(f) . (Alg) —1 pfg) —1
M Yog Eg) STEUNG T p®
and

. log E(f) _ pfg)—1
NS ) S B

Proof. By [3, Theorems 1, 2, 5, 6]

ps(ky .. sup nhn pfk) .. sup nlyn
A0~ M o TR A — o jof Togll/ELDT
pf) _ 4. sup logn
A = R inf Tog{i/n Tog (1B, (T} (40)
pUg) _ 4. sup log n

M) ™ B ot TogUn Tos(/E,@))

(39) follows from (40) by some manipulations which we omit. The rest
follows similarly.
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oy

THEOREM 16. Let f(X) = Yo anz® (@ real) be an entire function witi:
index k > 1, order p(k) and lower ovder Mk). If E () Ewu(f) and | ayfa, |
are nondecreasing for n > ng , then we have

. log E5™(f)
plk) ne® loglEy (/) En{f)]

log EX(/) o)
< 1< limsup 1o = VET S A0

_f_\_gf_)_ < llm mf IOg[En+1(f),/En(f )3

pky — w= log | a, |*/" @
_ : n10glE, (f)/ELF)] _ plk) '
sls &93 sup logia, t® A(k‘ ’
ME) m inf J08LERn (N En(f)]
p(k) i log | @nia/ay |
. loglEn (/Y EL)] _ pk)
S S o (i, | AR
and
Ak) .. log EX(f) . log E5(f) plk)
MM o M S
o) S o g, T = L S s T SN0
Proof. By Lemmas 1, 2 and Theorems 3, 4,
pk) .. sup nln L. sup Lo L ay
200 = W2 inf TogTlELDT — % inf TRl P Errn 7]

and

plky lim SUP nhn lim SUP L

M) = % inf log [ 1/a, | w= inf Tog | aufanss | |

(41) follows, using some manipulations, from {42).
The proof of the remaining assertions is similar and omitted.

ACKNOWLEDGMENT

1 would like to thank the referee for his comments.

REFERENCES

1. S. N. BErnSTEIN, “Lecons sur les Propriétés Extrémales =t la Meilleure Approximation
des Fonctions Analytiques d’une Variable Réele,” Paris, 1926.



112 REDDY

2.

3.

4,

G. MeNARDUS, “Approximation of Functions: Theory and Numerical Methods,”
Springer-Verlag, New York, 1967.

A. R. Reppy, Approximation of an entire function, J. Approximation Theory 3 (1970),
128-137.

S. M. SHAH, On the lower order of integral functions, Bull, Amer. Math. Soc. 52 (1946),
1046-1052.

. J. Suonar, The best polynomial approximation of functions possessing derivatives,

Duke Math. J. 8 (1941), 376-385.

. G. VaLroN, “Lectures on the General Theory of Integral Functions,” Chelsea, New

York, 1949.

. R. S. VARGA, On an extention of result of 8. N. Bernstein, J. Approximation Theory

1 (1968), 176-179.

. M. ApMep, On entire functions of infinite order, Compositio Marh. 13 (1955-56),

159-172.

Printed in Belgium



